

पदार्थ अभियांत्रिकी एवं निरूपण में आयन बीम पर 7वाँ अंतरराष्ट्रीय सम्मेलन (आईबीएमईसी-2022)

नवंबर 16-19, 2022

7th International Conference on Ion Beams in Materials Engineering and Characterization (IBMEC-2022)

November 16-19, 2022

सार पुस्तिका Abstract Booklet

अंतर-विश्वविद्यालय त्वरक केंद्र, नई दिल्ली, भारत Inter-University Accelerator Centre, New Delhi, India

	Utilizing the Potential of micro-Raman		
P-10	Spectroscopy to Investigate the Phase-Transitions	Satyabratt Pandey	50
	in Calamitic Liquid-Crystalline Materials		
	The grain size effect in Gd2O3-CeO2 upon 400		
P-11	KeV Kr+ ions irradiation and its radiation	Waseem Ul Haq	51
	tolerance		
	Catalytically induced nanographites by nickel-ion		
P-12	implantation/annealing process to improve the	Salila Kumar Sethy	52
	microplasma illumination properties of boron-		
	doped diamond films		
P-13	A review and tabulation for XRP cross sections	Vasu Khurana	53
	for Oxygen and Carbon ion impact		
	Tailoring the Properties of Oxygen Deficient		
P-14	Hafnium Oxide (HfO2) Thin Films by Ion Beam	Sikita Mandal	54
	Irradiation		
	Defect Microstructure during Successive		
P-15	Cascades in model Fe-Ni-Cr alloy studied using	Soumita Chakraborty	55
	MD Simulation		
P-16	Study of Dielectric Properties of Biodegradable	Manisha Verma	56
	Polymer with Inverse Spinel Iron Oxide		
	Nanomaterial		
	Low energy ion-beam induced pattern formation		
P-17	on sputtered Al films for achieving manifold	Mahesh Saini	57
	SERS enhancement		
P-18	Ultrafast Laser Ablation of Gamma Irradiated	Ravi Kumar	58
	Silicon		
P-19	Metallic oxide thin film formation on Si surface	Dipak Bhowmik	59
	by low energy O+ ion implantation		
P-20	Ion Beam Induced Epitaxial Recrystallization of	Sourav Bhakta	60
	Si/SiO2 Heterostructure by 100 MeV Ni7+ ions		
P-21	Formation of rust-free hematite nano-network	Shyamapada Patra	61
	through low-energy ion irradiation		
P-22	Thermal spike effects in swift heavy ion	Merry Gupta	62
	irradiated zirconolite		
P-23	Impurity phase dissolution and lattice parameter	Shaffy Garg	63
	variation by swift heavy ion irradiation in		
	MgO/Si (100) thin films		
P-24	Phonon scattering in carbon ion implanted rutile	Subhashree Sahoo	64
	TiO2 micro-flowers		
D 4-	Influence of 200 MeV Ag15+ swift heavy ion	~	c =
P-25	irradiations on the electronic band structure of	Sunidhi	65
	epitaxial lanthanum nickelate thin film		

Ultrafast Laser Ablation of Gamma Irradiated Silicon

<u>Kanaka Ravi Kumar¹</u>, R. Sai Prasad Goud², A. Mangababu¹, Dipanjan Banerjee³, Arshiya Anjum⁴, A.P. Gnana Prakash⁴, A. P. Pathak¹, S Venugopal Rao³ * and S.V.S. Nageswara Rao^{1,2 #}

In this work, we will present results from our studies on the ultrafast laser ablation of 60 Co Gamma irradiated Silicon. The effects of Gamma-irradiation on the resistivity of Si having different dopant concentrations and subsequent effects on the process of laser ablation will be discussed. The lightly doped Si (ρ_1 : 1-10 Ω cm) and heavily doped Si (ρ_2 : 0.001-0.002 Ω cm) were subjected to 60 Co Gamma irradiation at different doses (0.1, 1, 3, 6, 10 Mrad). It has been observed that the resistivity of pre-irradiated Si has altered with Gamma irradiation due to the creation of defects. The irradiated Si substrates will be utilized to fabricate Si nanoparticles by employing femtosecond/picosecond laser ablation technique. The dependence of initial resistivity on the structural and optical properties of resulting Si nanoparticles/nanostructures will be investigated. Details of all the characterizations and results will be discussed in the presentation.

¹School of Physics, University of Hyderabad, Hyderabad-500046, Telangana, India

²Centre for Advanced Studies in Electronics Science and Technology (CASEST), University of Hyderabad, Hyderabad-500046, Telangana, India

³Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia – Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India

⁴Department of Studies in Physics, University of Mysore, Manasagangothri, Mysuru-57006, Karnataka, India, *soma_venu@uohyd.ac.in, *nageshphysics@gmail.com